
VISUAL LANGUAGE RECOGNITION WITH A FEED-
FORWARD NETWORK OF SPIKING NEURONS 

Craig Rasmussen and Garrett Kenyon 
Los Alamos National Laboratory 

CCS-7, B287, Los Alamos, NM 87545 
 

Matthew Sottile 
Galois, INC 

421 SW 6th Ave. Suite 300, Portland, OR 97204 

ABSTRACT 

An analogy is made and exploited between the recognition of visual objects and language parsing. A subset of regular 
languages is used to define a one-dimensional ‘visual’ language, in which the words are translational and scale invariant. 
This allows an exploration of the viewpoint invariant languages that can be solved by a network of concurrent, hierarchi-
cally connected processors. A language family is defined that is hierarchically tiling system recognizable (HREC). As 
inspired by nature, an algorithm is presented that constructs a cellular automaton that recognizes strings from a language 
in the HREC family. It is demonstrated how a language recognizer can be implemented from the cellular automaton using 
a feed-forward network of spiking neurons. This parser recognizes fixed-length strings from the language in parallel and 
as the computation is pipelined, a new string can be parsed in each new interval of time. The analogy with formal lan-
guage theory allows inferences to be drawn regarding what class of objects can be recognized by visual cortex operating 
in purely feed-forward fashion and what class of objects requires a more complicated network architecture.  
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1. INTRODUCTION 

We make an analogy between the recognition of objects by visual cortex and the recognition of strings by 
language parsers. Each performs a recognition task; one on two-dimensional patterns of bits in an image and 
the other on one-dimensional patterns of characters in a string. This analogy is made more precise by re-
search on two-dimensional picture languages. Blum and Hewitt (1967) developed the first automaton model 
for recognizing picture languages followed later by the development of tiling systems that can also recognize 
these languages (Giammarresi and Restivo 1992, 1997). 

We draw attention to an ubiquitous feature of biological, visual object recognition; visual objects remain 
recognizable at any location and scale in the visual scene. For example, an oncoming car is still recognized as 
a car, even as the relative size of the car increases as it draws closer. In order to make progress, we reduce the 
complexity of a two-dimensional visual system by considering only one-dimensional strings. As suggested 
by the visual system, we present a family of ‘visual’ languages representing fixed length strings that are 
viewpoint (scale and translation) invariant. 

The formalism for defining visual languages is adapted from one-dimensional versions of tiling recogniz-
able picture languages (REC) and is presented in Section 2. Strings in this language family are finite, can be 
defined by regular expressions, and are thus recognizable by finite automata. We present an algorithm for 
constructing a cellular automaton (CA) that will recognize a visual language in parallel, each automaton in 
the two-dimensional grid operating on separate substrings concurrently. We note that the CA so constructed 
has similarities with the hierarchical structure in visual cortex. Ambiguities arising from tiling systems and 
viewpoint invariance are discussed in Section 3 and we conclude the paper by briefly speculating on the rele-
vance of formal language theory to computation in visual cortex and by suggesting further work. 



2. METHODOLOGY 

The visual language family is perhaps best understood in terms of two-dimensional tiling recognizable 
picture languages, denoted by REC (see Anselmo et al 2009 for details). The REC language family is defined 
by a tiling system (Σ, Γ, Θ, π) where Σ and Γ are finite alphabets, Θ is a finite set of tiles over Γ, and π : 
Γ→Σ is a projection. A tile is a picture of size (2,2) (2 rows and 2 columns) and B2,2(p) is the set of all sub-
pictures of size (2,2) that produce a picture p. 

A key point is the concept of a local language Li ⊆ Γi∗∗ where Γi∗∗ is the set of all possible pictures over 
the local alphabet Γi. A language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system projecting Li to 
L. We consider only the one-dimensional analog of REC, the class of regular string languages. In one dimen-
sion, a tile as described in Giammarresi and Restivo (1997) reduces to B1,2. However, we extend this slightly 
to consider tiles of size (1,n). In particular, we examine local languages expressed in terms of overlapping 
tiles of size (1,3). The tiles are made overlapping in order to more closely conform to the visual system as 
explained below. 

Visual processing in the brain takes place in layers of neurons. In a feed-forward model, as neurons in one 
layer spike they pass on this information via synapses to neurons in the successive layer. A two-dimensional 
representation of this layering is shown in Figure 1, where each neuron in layer L1 receives afferent input 
from a neighborhood of neurons in layer L0. For all the cases explored here, the size of the neighborhood is 3, 
although in visual cortex the neighborhood can be larger (Alonso et al 2001). 
 

 
 
Fig. 1. A two-dimensional network of spiking neurons connected by modifiable synapses. 
 

In Figure 1, three neurons in layer L0 are drawn as solid black circles indicating they are spiking at some 
frequency. This information is transmitted upward causing three neurons in layer L1 to spike in turn, although 
the middle neuron is more active as all of the neurons in its afferent neighborhood are spiking strongly. This 
causes neuron A in layer L2 to also begin spiking. It is important to note the geometry in Figure 1. While 
there are two spatial dimensions (x,L), the neurons are actually distributed in a three-dimensional lattice with 
neurons in L1 and above stacked in the third dimension. This stacking allows neurons to be tuned to respond 
to different combinations of inputs. If neural activity in L0 is encoded as a string, with spiking encoded as a 1 
and not spiking as a 0, then a neuron of tuning 01 in L1 might respond to the input string '000' while another 
neuron at the same spatial location might respond to '111'. 

Also note that the number of spatial sites in x drops by a factor of 2 in each successive layer. This reduc-
tion in x allows an increase in the number of different tunings that can be detected at a layer without the total 
number N of neurons in a layer growing appreciably. In effect, specific spatial information input to L0 is 
transformed into another representation by the computation being done within each layer. More on this im-
portant concept will be provided later. 

2.1 Finite-State Machine Construction 

As seen in Figure 1, visual cortex can be viewed as a pipeline with two-dimensional visual information 
flowing in at the bottom and working its way up the visual hierarchy. By contrast language processing (pars-



ing) by compilers takes input as a string of characters and processing takes place one character at a time. 
Thus visual processing is inherently parallel while string parsing (recognition) is most commonly performed 
serially. We explore the possibility of recognizing an input string in parallel by analogy with visual cortex. 
Assuming overlapping tiles B1,3 of size 3, the tiles can be arranged spatially to provide the connectivity pat-
tern shown in Figure 1. We also assume a finite input string and that the number of processing elements (neu-
rons), N0, in the first layer L0 is greater than or equal to the length l of the input string. Furthermore, addi-
tional processing elements are distributed in multiple layers Li, with the total number of layers (system 
height) M such that M ≥ log2 (N0). Each processing element ni,j receives input from 3 elements in the preced-
ing layer, Li-1. 

A finite input string from language L is over the alphabet Σ={0,1} where L ⊂ Σ∗. A local language L1 is 
defined over a local alphabet Γ1 such that L is a projection of L1. In general Γ1 is constructed from the set of 
tiles {'000', '001', '010', '011', '100', '101', '110', '111'} of all possible combination of inputs from L0. Likewise, 
additional local languages Li are defined over alphabets Γi at each layer in the hierarchy. The local alphabets 
are subsets of the tiles B in the preceding layer. The length of strings processed by a layer satisfies the recur-
rence relationship li = li-1/2. At the top of the hierarchy there is one final local alphabet Γh. This alphabet cor-
responds to a set of neurons nh,1, at a single spatial site, whose receptive fields span the entire input space in 
L0. This set is able to recognize strings in L. 

We define a language L ⊂ Σ∗ to be hierarchically tiling system recognizable (HREC), if it can be obtained 
from successive projections of local languages Li. This system (local tiling sets plus projections) is effec-
tively a description of the state-graph of a cellular automaton that recognizes a visual language. Because of 
the close correspondence between the construction of the cellular automata recognizing HREC languages and 
visual cortex, we assume that visual cortex is capable of recognizing this family of languages (though not 
limited to this family). 
 

2.2 Language of Line Segments 

Consider the language of finite line segments, L(line) over the character set Σ = {0,1} . This language can 
be represented by L(line) = 0+ + (1)+ + 0+. L(line) consists of a background of zeros and a foreground of any 
number 0 < n < N-1 of ones. Notice that the language can also be written as L(line) = 0+ + (1)n + 0+ as this 
form can be transformed to regular form by concatenating strings of different scales; writing it the latter way 
emphasizes the scale invariance. Translational invariance occurs via the padding of the foreground pattern on 
either side with zeros. This allows the line segment to be translated side to side and still be recognized as a 
line segment. 

A cellular automaton can be constructed that will recognize L(line). We now provide an overview of this 
construction; more complicated examples have been examined, e.g., a dashed-line language, but because of 
space considerations these examples are not shown here. At layer L1 the local character set is Γ1 = {01, s001, 
s011, e110, e100, 11} where the characters are constructed from tiles over combinations of characters in L0 that 
are present in the language. These character combinations are 01 = '000', s001='001', s011='011', e110= '110', 
e100='100', and 11='111'. Note that the two combinations '010' and '101' are not members of Γ1 because they 
never occur in strings from L(line) (except for the trivial string of only one '1'). The symbols s and e are used 
because character combinations making these L1 characters signal the start and end of the line segment. 

The process of building local character sets at each layer continues until the top of the hierarchy is 
reached. These local sets Γi are created from combinations of characters in the previous layer. The local sets 
all have symbols representing zeros 0i, ones 1i, and the start and end symbols, si and ei respectively. At the 
top of the hierarchy, there will be one set of neurons whose receptive fields span the entire input space in L0 
and this set is able to make a decision as to whether there is a line segment. 

Each local language Li is a description of the original language, but constructed from the local character 
set Γi representing the enhanced scale. The scale is enhanced because any character in Γi is based on three 
characters from Γi-1 (recall that the number of spatial nodes decreases by a factor of 2 at each layer). An ex-
ception to this rule is that sometimes there are pass through characters that simply carry information from 
one layer to another. For example, a line segment of scale n = 8 is recognized within the receptive field of 



some node at layer L3 (3 = log2(8)) and can be recognized at this layer. Thus in layer L3 the character cyes will 
be activated and this character is passed up the hierarchy indicating a string from L(line) has been recog-
nized. Illegal combinations of characters can also be detected, so in general, a local character set consists of 
characters of the form Γi = {0i, si, 1i, ei, cno, cyes}. 

3. AMBIGUITY 

As described in Giammarresi and Restivo (2008), the definition of languages in terms of recognizability 
by tiling systems (local languages and projections) is implicitly non-deterministic (ambiguous). Informally, a 
tiling system is unambiguous if every picture in a language has a unique counter-image in its corresponding 
local language. Indeed, Anselmo et al (2006) have shown that it is undecidable whether a given tiling system 
is unambiguous or not. This may seem like a severe restriction, however in this section we make the case that 
visual cortex must exploit ambiguity in some form in recognizing visual languages. 

 

3.1 Constraints 

At this point it is time to step back and consider what we are trying to accomplish. The goal is to con-
struct cellular automata that recognize a viewpoint invariant subset V of the hierarchically-tile-able lan-
guages. V is a subset of regular languages and we know it is possible to construct an automaton that will rec-
ognize any regular language, even a specific random string. However, this finite automaton would have a 
number of specific states (nodes) and would be very brittle in that it could only recognize one very specific 
pattern at one scale in the family of regular languages. 

On the other hand, a finite automaton could be constructed that would recognize the set of all strings S ⊂ 
Σ∗ whose length is l < N0. A layer’s local character set Θi would then contain all three-way combinations of 
characters in the previous set Θi-1. The size of the character set grows as the cube, size(Θi) = size3(Θi-1) where 
size(Θ0) = 2. Thus the last recognizing layer would contain an exponentially large number of characters. 

This general recognizer would allow visual objects to be constructed out of many smaller recognizable 
objects. For example, a dog has a body, fours legs, a face, and a tail. However, the brain simply does not have 
enough resources to retain all possible character combinations. Each distinct cortical area (e.g., V1, V2, and 
V4) in visual cortex has approximately the same number of neurons. As we have assumed that spatial resolu-
tion only drops off by a factor of two at each layer, the number of local characters can only increase by a 
roughly a factor of two at each layer. This is a very tight constraint as the growth rate in the size of the local 
character set is linear, size(Θi) = k, size(Θi-1) << size3(Θi-1) with k ∼ 2. The important conclusion to make from 
this simple analysis is that we must ruthlessly reduce (constrain) the number of local characters in whatever 
way possible. 

3.2 Scale and Position Information 

From the example of the language L(line), it was shown that a line segment of scale n = 8 is recognized 
at layer L3 and that the character cyes is activated and passed on to higher layers. Note that a local character 
c3,yes could be created that carries scale information as well as recognition. However, because this would lead 
to an increase in the number of total states (because size information is associated with each possible object 
recognized), we assume that size information is discarded in favor of conserving the total number of states. It 
may be possible that some relative size information is retained in visual cortex, but not that all complete size 
information is retained. It is likely that a more complex network topology is employed rather than a purely 
feed-forward network to compute size. 

It may appear surprising to see that size can be described with a regular language subset and not require a 
more complex language such as a context-free language. This apparent contradiction occurs because we are 
considering only strings of fixed length. Thus a finite automaton can be constructed that measures the length 
of the line segment. Likewise, position information could be recorded at the point a string is recognized, per-



haps with the character ci,j,yes. However, allocating resources to record position information would also ex-
plode the number of characters (states) in the recognizer. 

Thus, at the top of the hierarchy, we argue that relatively little spatial and size information about an object 
is kept by visual cortex in order to conserve resources. Retaining only the fact that an object is present allows 
many more objects (patterns of strings) to be represented. In effect, spatial and position information has been 
traded for the ability to recognize more objects. It is thought that position information is obtained from the 
separate dorsal pathway in visual cortex. We predict that some other mechanism may also be present to 
measure size information. 

 

3.3 Equivalence Classes 

Ignoring all size and location information in the hierarchy helps reduce the proliferation of states, al-
though this alone may not meet the resource constraint on the number of actual states. We are forced to 
eliminate the combinatorial explosion of possible states (enumerated by characters) by combining states into 
equivalence classes. For example, for the line-segment language we combine the local characters s001 and s011 
in Γ1 into one character represented by the regular expression s1 = s001 + s011. Likewise, we combine the line 
end characters so that e1 = e110 + e100. 

Support for combining characters into equivalence classes comes from considering the translation of an 
input pattern by one character position either to the left or to the right. A string of zeros '00000' isn't modified 
by a translation so the zero state can't be reduced further and a tile covering this string is labeled by the local 
character 01. Likewise the tile covering a string of ones is labeled 11. However, consider a “dashed” string 
'01010101'. If the string is shifted to the left or right by one character, it will either appear as the tile '010' or 
'101' to a detector node. Surely this level of detail (relative position in a dashed line) can't be important — 
especially since the language family being considered is translationally invariant — so the two characters are 
combined into an equivalence class (a single character) representing that a portion of a dashed line, d1 = '010' 
+ '101', has been detected. A similar argument holds for the start and end characters s1 and e1. 

After taking into consideration translational invariance, the general local character set in L1 is Γ1 = {01, s1, 
d1, 11, e1, cyes, cno}. Since the recognition characters cyes and cno are not combinable with other characters in 
later layers, the effective size of Γ1 is reduced from eight to five characters. Combining like characters under 
translation is but one way to form equivalence classes. This may not even lead to ambiguity as it may be just 
used as a way to reduce redundant information (recall the use of overlapping tiles). In general, equivalence 
classes add ambiguity. However, equivalence classes are likely necessary from a resource point of view and 
if so visual cortex must be tolerant of a certain level of ambiguity. 

In summary, we define a visual language V as a member of the HREC family constrained in two impor-
tant ways. First, we assume that V is invariant under translation; the input string (padded by zeros at either 
end) may be presented at any position j in L0. Second, we assume that V is scale invariant; the one-
dimensional “image” represented by the input string may expand or shrink and still be a member of the lan-
guage. This definition is analogous to the visual system in that it can recognize a predator, for instance, no 
matter where the predator appears in the visual frame. A predator will also be recognized both relatively near 
and far in the visual frame. 

Manually constructing a CA recognizing a visual language is tedious because it requires constructing lo-
cal character sets for separate strings at every scale n.  It also requires constructing equivalence classes by 
considering string translations.  This begs for machine construction of the recognizer. We have implemented 
a recognizer using spiking neurons with the PetaVision1 neural simulator.  In this implementation a separate 
neuron was assigned to each character in a local set with the network connectivity as shown in Figure 1. 

The PetaVision recognizer was tested by generating strings from L(line).  The recognizer accepted all 
strings from L(line) and none that were not in the language.  The next step in this line of research is to at-
tempt to learn synaptic weights for a complete CA hierarchy for a given language, using spike-timing-
dependent synaptic plasticity (STDP, Song et al, 2000).  This would allow a recognizer to be learned and not 
require tedious manual construction. 

                                                
1 http://sourceforge.net/projects/petavision/ 



CONCLUSIONS 

We have begun to explore the question of which viewpoint invariant languages can be solved by a net-
work of concurrent, hierarchically connected processors. This has led to the definition of a language that is 
hierarchically tiling system recognizable HREC. This language family is closely related to the REC family of 
languages. 

A one-dimensional visual language was defined as an HREC language that is translational and scale 
(viewpoint) invariant. An algorithm was presented that constructs a recognizer for an HREC language and 
recognition of the line language was considered. We demonstrated that a recognizer can be implemented with 
a network of spiking neurons in PetaVision. 

However, several problems were discovered while considering one-dimensional visual languages. Some 
of these problems are related to aspects of viewpoint invariance and others related to ambiguity. Regarding 
ambiguity, it is interesting to recall that it has been shown to be undecidable whether a particular REC is am-
biguous or not. Perhaps ambiguity at some level is required for visual processing or is resolved by a higher 
level of computation than can be provided by a finite state automaton. 

Because of an extremely tight resource constraint (linear growth rate in the size of a layer’s local charac-
ter set), only a small subset of possible local characters may be retained (in the form of equivalence classes). 
This implies that vision must be as much about what we don’t (cannot) see as about what we can see. This 
can be seen as a positive, because as a consequence the brain must have learned how to replace specificity 
with generality. This generality must in some way decrease the brittleness of object recognition, as the loss of 
a few bits due to noise in an image doesn’t significantly degrade performance. 

We claim that formal language theory can provide guidance — especially concerning size and location in-
formation as discussed above — in understanding how computation is done in visual cortex. In the process of 
studying this relationship, we have discovered an algorithm (potentially new) for constructing a cellular 
automaton that will process a series of finite length strings in log(N0) time (wall clock) with N0 nodes in L0 
processing concurrently. 
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